SYNTHESES OF 23-C-ALKYLIDENE, AND 23-N-CONTAINING DERIVATIVES OF 5-O-MYCAMINOSYLTYLONOLIDE

Norio Kajikawa, Tsutomu Tsuchiya and Sumio Umezawa
Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki 211, Japan
\section*{Hamao Umezawa}
Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan
(Received for publication October 24, 1986)

Abstract

Several derivatives of 5-O-mycaminosyltylonolide substituted at $\mathrm{C}-23$ have been prepared; these are 23-deoxy-23-C-methylene (3), 23-deoxy-23-C-(methoxycarbonylmethylene) (5), 23-deoxy-23-C-(ethoxycarbonylmethylene) (7), and 23-deoxy-23-C-(butoxycarbonylmethylene) (9), 23-deoxy-23-C-[(2E)-3-(ethoxycarbonyl)-2-propenylene] (11), and 23-deoxy-23-(dimethylaminoimino) (13), and 14-de(hydroxymethyl)-14-nitrile (16) derivatives. The key steps in these syntheses are the reactions of $2^{\prime}, 4^{\prime}$-di-O-acetyl-3-O-tert-butyldimethylsilyl-23-deoxy-23-oxo-5-O-mycaminosyltylonolide diethyl acetal (1) with several Wittig reagents, 1,1-dimethylhydrazine and hydroxylamine. Antibacterial activities of these compounds are also described.

In previous papers, ${ }^{1,2)}$ we described the syntheses of 23 - C-substituted derivatives (alkyl, phenyl, allyl, vinyl and ethynyl) of 5-O-mycaminosyltylonolide from a protected 23 -oxo derivative (1) with several Grignard reagents, and found that most of these derivatives had marked antibacterial activities. This paper describes the syntheses of some derivatives having an unsaturated bond at C-23 from $\mathbf{1}$ by

$1 \mathrm{R}=\mathrm{CH}=\mathrm{O}$
$2 \mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
$4 \mathrm{R}=\mathrm{CH}=\mathrm{CHCOOCH}_{3}$
$6 \mathrm{R}=\mathrm{CH}=\mathrm{CHCOOE} \mathrm{t}$
$8 \mathrm{R}=\mathrm{CH}=\mathrm{CHCOOBU}$
$10 \mathrm{R}=\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCOOEt}$
$12 \mathrm{R}=\mathrm{CH}=\mathrm{NN}\left(\mathrm{CH}_{3}\right)_{2}$
$14 \mathrm{R}=\mathrm{CH}=\mathrm{NOH}$
$15 \mathrm{R}=\mathrm{C} \equiv \mathrm{N}$

$3 \mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
$5 \mathrm{R}=\mathrm{CH}=\mathrm{CHCOOCH}_{3}$
$7 \mathrm{R}=\mathrm{CH}=\mathrm{CHCOOE} \mathrm{C}$
$9 \mathrm{R}=\mathrm{CH}=\mathrm{CHCOOBu}$
$11 \mathrm{R}=\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCOOE} \mathrm{t}$
$13 \mathrm{R}=\mathrm{CH}=\mathrm{NN}\left(\mathrm{CH}_{3}\right)_{2}$
$16 \mathrm{R}=\mathrm{C} \equiv \mathrm{N}$
reaction with the Wittig reagents, 1,1 -dimethylhydrazine and hydroxylamine.
$2^{\prime}, 4^{\prime}$-Di-O-acetyl-3-O-tert-butyldimethylsilyl-23-deoxy-23-oxo-5-O-mycaminosyltylonolide diethyl acetal ${ }^{1,2)}$ (1) was treated with methylene-triphenylphosphorane in oxolane to give the 23 -methylene derivative (2) in 40% yield. Presence of the terminal methylene $\left(24-\mathrm{H}_{3}, \mathrm{H}_{6}\right)$ was proved by the ${ }^{1} \mathrm{H}$ NMR spectrum, in which two protons resonated at $\delta 5.14$ and 5.15 coupled to $23-\mathrm{H}$ with $11\left(J_{23,24(c i s)}\right)$ and $18 \mathrm{~Hz}\left(J_{23,24 \text { (trans })}\right)$. The moderate yield of 2 may, in part, be ascribed to the side reaction occurred at the C-9 carbonyl with the Wittig reagent. Treatment of $\mathbf{1}$ with other Wittig reagents containing alkoxycarbonyl groups, that is, methoxy-, ethoxy-, and butoxycarbonylmethylenetriphenylphosphorane and trans-3-(ethoxycarbonyl)-2-propenylenetriphenylphosphorane, each being readily prepared from the corresponding commercially available triphenylphosphonium bromide, gave the (23E)-23-C-

Table 1. Selected ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{3}, \mathbf{5}, \mathbf{7}, \mathbf{9}, \mathbf{1 1}, 13$ and $\mathbf{1 6}$ (in CDCl_{3} at room temp).

Additional data for $11: \delta 5.87(1 \mathrm{H}, \mathrm{d}, 26-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{dd}, 25-\mathrm{H}) ; J_{24,25}=10.5, J_{25,26}=15 \mathrm{~Hz}$. Other J values common for the seven compounds were: $J_{2 \mathrm{a}, 2 \mathrm{~b}}=16.5, J_{2 \mathrm{a}, 3}=0, J_{2 \mathrm{~b}, 3}=10 \sim 10.5, J_{3,4} \sim 1, J_{4,5}=$ $9 \sim 10, J_{5,8}=0, \quad J_{4,18}=6.8, J_{8,21}=6.8, J_{18,17}=7.5, J_{13,14}=J_{14,15}=10, \quad J_{15,18 \mathrm{a}}=9.5 \sim 10, \quad J_{15,16 \mathrm{~b}}=3, \quad J_{8,19 \mathrm{~b}}=$ $10, J_{189,18 \mathrm{~b}}=18, J_{10,11}=15.5, J_{1^{\prime}, 2^{\prime}}=7.5, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=10, J_{4^{\prime}, 5^{\prime}}=9.3$ and $J_{5^{\prime}, 8^{\prime}}=6.3 \mathrm{~Hz}$.

* Each signal has a small splitting.

Mult.: Multiplicity.

Table 2. Antibacterial spectra (MIC, $\mu \mathrm{g} / \mathrm{ml}$) of the products.

Test organisms	MT	3	5	7	9	11	13	16
1 Staphylococcus aureus 193	1.56	<0.2	<0.2	<0.2	0.39	0.78	0.39	0.78
2 S. aureus EMf	50	100	50	25	50	>100	>100	>100
3 S. aureus 209P	1.56	<0.2	<0.2	<0.2	0.39	0.78	0.39	<0.2
4 S. aureus MS 9351	>100	>100	>100	>100	>100	>100	>100	>100
5 S. aureus MS 9610	>100	>100	>100	>100	>100	>100	>100	>100
6 S. aureus MS 9861	1.56	0.39	0.39	0.39	0.78	1.56	0.78	0.78
7 S. aureus MS 10225	3.12	0.39	0.39	0.39	0.39	1.56	0.78	0.78
8 S. aureus MS 10246	>100	>100	>100	>100	>100	>100	>100	>100
9 S. aureus Smith	1.56	0.39	0.39	0.39	0.78	1.56	0.78	0.78
10 Micrococcus luteus PCI 1001	<0.2	<0.2	<0.2	<0.2	0.39	1.56	0.39	0.39
11 Bacillus subtilis NRRL B-558	3.12	<0.2	0.39	<0.2	0.39	3.12	0.78	1.56
12 Corynebacterium bovis 1810	3.12	<0.2	<0.2	<0.2	0.39	1.56	0.78	0.78
13 Escherichia coli NIHJ	12.5	3.12	12.5	6.25	12.5	>100	6.25	6.25
14 E. coli K-12	25	6.25	12.5	12.5	25	>100	25	12.5
15 E. coli K-12 R-5	50	12.5	12.5	12.5	50	>100	50	25
16 E. coli K-12 ML 1629	100	50	50	50	100	>100	>100	100
17 E. coli K-12 ML 1410	>100	50	25	50	100	>100	>100	100
18 E. coli K-12 ML 1410 R81	100	100	50	50	100	>100	>100	100
19 E. coli K-12 LA290 R55	100	50	25	25	100	>100	>100	50
20 Klebsiella pneumoniae PCI 602	3.12	3.12	12.5	6.25	1.56	100	3.12	6.25
21 Shigella dysenteriae JS 11910	1.56	0.78	0.78	1.56	0.78	3.12	1.56	1.56
22 Salmonella enteritidis 1891	3.12	1.56	3.12	3.12	3.12	50	6.25	3.12
23 S. typhi T-63	100	25	50	50	100	>100	100	25
24 Enterobacter aerogenes ATCC 13048	100	25	50	50	100	>100	100	100
25 Providencia sp. Pv 16	>100	100	100	50	100	>100	>100	>100
26 Serratia marcescens	50	12.5	50	50	50	>100	50	50
27 Proteus vulgaris OX-19	50	12.5	25	25	50	>100	100	25
28 Pseudomonas aeruginosa A3	25	6.25	12.5	12.5	25	100	25	12.5
Geometrical mean for No. 1~12	6.6	1.4	1.8	1.5	3.1	7.4	4.2	4.2
Geometrical mean for No. $13 \sim 28$	35	13	19	19	30	>100	42	25

(alkoxycarbonylmethylene) derivatives (4, 6 and 8), and (23E)-23-C-[(2E)-3-(ethoxycarbonyl)-2-propenylene] derivative (10) in moderate to high yields. The 23-trans structure of these compounds was concluded by their ${ }^{1} \mathrm{H}$ NMR spectra (see Experimental). Removal of the protecting groups of 2, 4, 6,8 and 10 in warm methanol (deacetylation) and with 0.5 m hydrochloric acid in 50% aqueous acetonitrile (deblocking the acetal and O-silyl groups) gave the final products ($\mathbf{3}, 5,7,9$ and 11).

Treatment of 1 with 1,1-dimethylhydrazine or hydroxylamine gave the corresponding hydrazone (12) or oxime (14), the latter being a mixture of two geometrical isomers. Treatment of 14 with thionyl chloride in dichloromethane in the presence of 4 -dimethylaminopyridine gave the corresponding nitrile (15) by dehydration. Removal of the protecting groups of 12 and 15 gave the final 23-(dimethylaminoimino) (13) and 14-nitrile (16) derivatives.

Antibacterial activities of these products are shown in Table 2. The compounds having a double bond between C-23 and C-24, especially 3, showed enhanced antibacterial activities in comparison with the activity of the parent substance, 5-O-mycaminosyltylonolide (MT).

Experimental

$2^{\prime}, 4^{\prime}$-Di- O-acetyl-3-O-tert-butyldimethylsilyl-23-deoxy-23-C-methylene-5-O-mycaminosyltylonolide Diethyl Acetal (2)

To a solution of methyltriphenylphosphonium bromide $(26.7 \mathrm{mg})$ in dry oxolane $(0.33 \mathrm{ml})$ was added 2 m sodium hydride in dimethyl sulfoxide $(0.057 \mathrm{ml})$ and the mixture was stirred at room temperature for 4 hours, then at $50^{\circ} \mathrm{C}$ for 5 minutes. To the resulting yellow solution was added 1 (32.8 mg) in oxolane (0.16 ml) and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 5 minutes. The solution showed, on TLC with hexane - ethyl acetate, two spots at $\operatorname{Rf} 0.1$ and 0.38 (2). After addition of benzene, the organic solution was washed with aqueous sodium sulfate solution (saturated), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Silica gel column chromatography of the residue with hexane - ethyl acetate ($3: 1$) gave a solid of $\mathbf{2}, 13.2 \mathrm{mg}(40 \%)$ and an unknown product (Rf 0.1$), 6.6 \mathrm{mg} . \quad \mathbf{2}:[\alpha]_{\mathrm{D}}^{22}+5^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1750$ (lactone), $1680(\mathrm{COCH}=\mathrm{CH}), 1595$ (diene); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.04$ and 0.18 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}$-tert Bu$), 1.81\left(3 \mathrm{H}, \mathrm{d}, J \leqq 1 \mathrm{~Hz}, 22-\mathrm{CH}_{3}\right), 2.06$ and 2.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2$), $2.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.49\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{a}, 2 \mathrm{~b}}=19, J_{2 \mathrm{~b}, 3}=7.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{b}}\right), 2.74(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3^{\prime}, 4^{\prime}}=10 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 3.20(1 \mathrm{H}$, ddd, $14-\mathrm{H}), 3.57(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, 5-\mathrm{H}), 3.68\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.99(1 \mathrm{H}$, $\mathrm{d}, 3-\mathrm{H}), 4.36\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=7.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.69(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 4.75\left(1 \mathrm{H}, \mathrm{t}, J=10 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.83(1 \mathrm{H}$, $\left.\mathrm{dt}, J_{14,15}=J_{15,16 \mathrm{e}}=9.5, J_{15,18 \mathrm{~b}}=2.5 \mathrm{~Hz}, 15-\mathrm{H}\right), 4.89\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=10 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.14\left(1 \mathrm{H}, \mathrm{d}, J_{23,24 \mathrm{a}}=\right.$ $\left.11, J_{24 a, 24 \mathrm{~b}}=0 \mathrm{~Hz}, 24-\mathrm{H}_{\mathrm{a}}\right), 5.15\left(1 \mathrm{H}, \mathrm{d}, J_{23,24 \mathrm{~b}}=18 \mathrm{~Hz}, 24-\mathrm{H}_{\mathrm{b}}\right), 5.69(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 5.70\left(1 \mathrm{H}, \mathrm{ddd}, J_{14,23}=\right.$ $8.3 \mathrm{~Hz}, 23-\mathrm{H}), 6.26\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=15 \mathrm{~Hz}, 10-\mathrm{H}\right), 7.18(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{48} \mathrm{H}_{79} \mathrm{NO}_{12} \mathrm{Si}$: C 63.81, H 9.13, N 1.62. Found: C 64.04, H 9.12, N 1.79.

23-Deoxy-23-C-methylene-5-O-mycaminosyltylonolide (3)

A solution of $2(41.6 \mathrm{mg})$ in $\mathrm{MeOH}(0.8 \mathrm{ml})$ was kept at $50^{\circ} \mathrm{C}$ for 12 hours. On TLC with CHCl_{3} -$\mathrm{MeOH}-28 \%$ aqueous ammonia ($15: 1: 0.1$), the solution showed a single spot (deacetyl product, Rf 0.12 ; cf. 2, $\operatorname{Rf} 0.65$). Concentration gave a residue, that was dissolved in 0.5 m hydrochloric acid in 50% aqueous acetonitrile (0.4 ml) and the solution was kept at $37^{\circ} \mathrm{C}$ for 14 hours. TLC of the solution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aqueous ammonia ($10: 1: 0.1$) showed a single spot of 3 (Rf 0.2 ; $c f$. the deacetyl product, Rf 0.3). After addition of sodium hydrogencarbonate (40 mg) followed by chloroform, the organic solution was washed with aqueous sodium sulfate (saturated), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by short column chromatography with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-$ 28% aqueous ammonia ($25: 1: 0.1$) to give a solid of $3,27.4 \mathrm{mg}(96 \%):[\alpha]_{\mathrm{D}}^{22}+5^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}$ $(\mathrm{KBr}) \mathrm{cm}^{-1} 1720$ (lactone and CHO), $1680,1595$.

Anal Caled for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{NO}_{9} \cdot \mathrm{H}_{2} \mathrm{O}: ~ \mathrm{C} 62.85, \mathrm{H} 8.67, \mathrm{~N} 2.29$. Found:

C 63.02, H 8.58, N 2.24.

General Procedure for Preparation of (23E)-2', 4^{\prime}-Di- O-acetyl-23-C-(alkoxycarbonylmethylene)-3-O-tert-butyldimethylsilyl-23-deoxy-5-O-mycaminosyltylonolide Diethyl Acetals (4, 6 and 8), and (23E)-2', 4'-Di-O-acetyl-23-C-[(2E)-3-(ethoxycarbonyl)-2-propenylene]-3-O-tert-butyldimethylsilyl-23-deoxy-5-O-mycaminosyltylonolide Diethyl Acetal (10)

To a solution of a (alkoxycarbonylmethyl)triphenylphosphonium bromide (0.5 mmol) or [($2 E$)-3-(ethoxycarbonyl)-2-propenyl]triphenylphosphonium bromide in dry oxolane (2.2 ml) was added 2 m sodium hydride in dimethyl sulfoxide (0.3 ml) and the mixture was vigorously stirred at room temperature for 30 minutes. To the resulting suspension was added $1(217 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dry oxolane $(1.0 \mathrm{ml})$, and the mixture was stirred at room temperature for 30 minutes. Addition of water (0.8 ml) followed by concentration gave a residue, that was extracted with benzene. The organic solution was washed with aqueous sodium sulfate (saturated), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Purification of the crude product by column chromatography with hexane - ethyl acetate $(3: 1)$ gave solids of the titled compounds in yields of $64 \%(4), 63 \%(6), 94 \%(8)$ and 53% (10), respectively.

4: $[\alpha]_{D}^{22}-11^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\mathrm{cm}^{-1} 1750,1675,1590 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.04$ and 0.17 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\right.$ tert - Bu), $1.81\left(3 \mathrm{H}, \mathrm{d}, J \leqq 1 \mathrm{~Hz}, 22-\mathrm{CH}_{3}\right), 2.06$ and 2.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2$), $2.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.49\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{a}, 2 \mathrm{~b}}=19, J_{2 \mathrm{~b}, 3}=7.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{b}}\right), 2.73(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3^{\prime}, 4^{\prime}}=10 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), \sim 3.38(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}), 3.58\left(1 \mathrm{H}, \mathrm{d}, J_{4,5}=9 \mathrm{~Hz}, 5-\mathrm{H}\right), 3.68(1 \mathrm{H}, \mathrm{dq}$, one of $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.99(1 \mathrm{H}, \mathrm{d}, 3-\mathrm{H}), 4.35\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}}=7.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.68(1 \mathrm{H}, \mathrm{m}$, $20-\mathrm{H}), 4.75\left(1 \mathrm{H}, \mathrm{t}, J=10\right.$ and $\left.10 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.89\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 4.90(1 \mathrm{H}, \mathrm{dt}, 15-\mathrm{H}), 5.67(1 \mathrm{H}, \mathrm{d}$, $\left.J_{13,14}=10.5 \mathrm{~Hz}, 13-\mathrm{H}\right), 5.92\left(1 \mathrm{H}, \mathrm{dd}, J_{23,24}=16.3, J_{14,24}=1 \mathrm{~Hz}, 24-\mathrm{H}\right), 6.28\left(1 \mathrm{H}, \mathrm{d}, J_{10,11}=15 \mathrm{~Hz}\right.$, $10-\mathrm{H}), 6.81\left(1 \mathrm{H}, \mathrm{dd}, J_{14,23}=8.5 \mathrm{~Hz}, 23-\mathrm{H}\right), 7.16(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{48} \mathrm{H}_{81} \mathrm{NO}_{14} \mathrm{Si}: \quad \mathrm{C} 62.40, \mathrm{H} 8.78, \mathrm{~N} 1.52$.
Found:
C 62.65, H 8.86, N 1.73.
6: $[\alpha]_{\mathrm{D}}^{22}-10^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\mathrm{cm}^{-1} 1750,1680,1590 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.30(3 \mathrm{H}, \mathrm{t}$, $\left.J=7 \mathrm{~Hz}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.06$ and 2.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2$), $2.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.20(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 5.67(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 5.92(1 \mathrm{H}, \mathrm{dd}, 24-\mathrm{H}), 6.28(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H}), 6.81(1 \mathrm{H}, \mathrm{dd}, 23-\mathrm{H}), 7.16$ ($1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H}$).

Anal Calcd for $\mathrm{C}_{49} \mathrm{H}_{83} \mathrm{NO}_{14} \mathrm{Si}: \quad \mathrm{C} 62.75, \mathrm{H} 8.86, \mathrm{~N} 1.49$.
Found: $\quad \mathrm{C} 62.90, \mathrm{H} 8.67, \mathrm{~N} 1.53$.
8: $[\alpha]_{0}^{22}-9^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1750,1680,1590 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{8}\right) \delta 4.14(2 \mathrm{H}, \mathrm{t}$, $\mathrm{COOCH}_{2} \mathrm{C}_{3} \mathrm{H}_{7}$).

Anal Caled for $\mathrm{C}_{51} \mathrm{H}_{87} \mathrm{NO}_{14} \mathrm{Si}: \quad \mathrm{C} 63.42, \mathrm{H} 9.02, \mathrm{~N} 1.45$.
Found: $\quad \mathrm{C} 63.53, \mathrm{H} 8.91, \mathrm{~N} 1.32$.
10: $[\alpha]_{\mathrm{D}}^{22}+19^{\circ}\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\mathrm{cm}^{-1} 1755,1720,1680,1645,1600 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.05$ and 2.07 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2\right), 2.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.20(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.34\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.88\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.66(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 5.85\left(1 \mathrm{H}, \mathrm{d}, J_{25,26}=15\right.$ $\mathrm{Hz}, 26-\mathrm{H}), 5.94\left(1 \mathrm{H}, \mathrm{dd}, J_{14,23}=8.3, J_{23,24}=16 \mathrm{~Hz}, 23-\mathrm{H}\right), 6.25\left(1 \mathrm{H}, \mathrm{dd}, J_{24,25}=10.5 \mathrm{~Hz}, 24-\mathrm{H}\right), 6.27$ $(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{dd}, 25-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{51} \mathrm{H}_{85} \mathrm{NO}_{14} \mathrm{Si}$: C 63.55, H 8.83, N 1.45.
Found: \quad C 63.80, H 8.78, N 1.63.
2',4'-Di-O-acetyl-3-O-tert-butyldimethylsilyl-23-deoxy-23-(dimethylaminoimino)-5-O-mycaminosyltylonolide Diethyl Acetal (12)

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $1(292 \mathrm{mg})$ in $\mathrm{MeOH}(2.9 \mathrm{ml})$ was gradually added 1,1-dimethylhydrazine (1.4 ml) under stirring for 15 minutes and the mixture was kept at the temperature for 10 minutes. TLC of the solution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aqueous ammonia ($15: 1: 0.1$) showed a single spot of 12 (Rf $0.55 ; c f .1, \operatorname{Rf} 0.4)$. Concentration gave a residue, that was extracted with chloroform. The organic solution was washed with aqueous sodium hydrogensulfate (saturated), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by short column chromatography with hexane ethyl acetate (2:1) to give a solid of $12,194 \mathrm{mg}(63 \%):[\alpha]_{\mathrm{D}}^{22}-18^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathbb{I R}(\mathrm{KBr}) \mathrm{cm}^{-1} 1750$ (lactone), $1680(\mathrm{C}=\mathrm{N}), 1595 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.04$ and 0.16 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.05$ and 2.07 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2$), $2.35\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NN}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.36\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.89$
$\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 4.95(1 \mathrm{H}, \mathrm{dt}, 15-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H}), 6.37$ $\left(1 \mathrm{H}, \mathrm{d}, J_{14,23}=6.3 \mathrm{~Hz}, 23-\mathrm{H}\right), 7.19(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{47} \mathrm{H}_{83} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{Si}$: C 62.05, H 9.13, N 4.62 . Found: \quad C 61.98, H 9.00, N 4.75.

2',4'-Di-O-acetyl-3-O-tert-butyldimethylsilyl-23-deoxy-23-(hydroximino)-5-O-mycaminosyltylonolide Diethyl Acetal (14)

A mixture of $1(423 \mathrm{mg})$ and hydroxylamine sulfate $(400 \mathrm{mg})$ in $\mathrm{MeOH}(4.2 \mathrm{ml})$ was kept at room temperature for 2 hours. TLC of the solution with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aqueous ammonia (15:1: 0.1) showed two spots at $\operatorname{Rf} 0.35$ (major) and 0.3 (minor). Concentration gave a residue, that was extracted with CHCl_{3}. The organic solution was treated as described for 12, and concentrated. The residue was purified by column chromatography with hexane - ethyl acetate ($4: 1$) to give a solid of $14,237 \mathrm{mg}(63 \%):[\alpha]_{\mathrm{D}}^{21}-14^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\mathrm{cm}^{-1} 1750,1680,1595 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.04$ and $0.16\left(\right.$ each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.06$ and $2.08($ each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2), 2.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.37(1 \mathrm{H}, \mathrm{d}$, $\left.1^{\prime}-\mathrm{H}\right), 4.89\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 4.98(1 \mathrm{H}, \mathrm{dt}, 15-\mathrm{H}), 5.71(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.29(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{d}$, $11-\mathrm{H}), 7.33\left(1 \mathrm{H}, \mathrm{d}, J_{14,23}=7.5 \mathrm{~Hz}, 23-\mathrm{H}\right), 6.92(1 \mathrm{H}$, slightly br s, NOH$)$.
$\begin{array}{cl}\text { Anal Calcd for } \mathrm{C}_{45} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Si}: & \mathrm{C} 61.12, \mathrm{H} 8.80, \mathrm{~N} 2.85 . \\ \text { Found: } & \text { C 61.22, H 8.84, N } 3.17 .\end{array}$
2',4'-Di-O-acetyl-3-O-tert-butyldimethylsilyl-14-de(hydroxymethyl)-5-O-mycaminosyltylonolide Diethyl Acetal 14-Nitrile (15)

To a cold $\left(--10^{\circ} \mathrm{C}\right)$ mixture of 4-dimethylaminopyridine (11.7 mg) and thionyl chloride ($6.1 \mu \mathrm{l}$) in dichloromethane (0.33 ml) was added $14(33.8 \mathrm{mg})$ in dichloromethane $(0.17 \mathrm{ml})$, and the mixture was stirred at the temperature for 2 minutes, then, after addition of 4-dimethylaminopyridine (11.7 mg), at room temperature for 15 minutes. TLC of the mixture with hexane - ethyl acetate ($2: 1$) showed a single spot ($15, \operatorname{Rf} 0.33 ; c f .14$, $\operatorname{Rf} 0.23$). Dichloromethane (1 ml) was added, and the organic solution was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with hexane - ethyl acetate $(4: 1)$ to give a solid of $15,24.4 \mathrm{mg}(74 \%):[\alpha]_{D}^{21}-20^{\circ}$ (c 1, CHCl_{3}); IR (KBr) $\mathrm{cm}^{-1} 1750,1685,1600 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.04$ and 0.16 (each 3 H , s, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.05$ and 2.26 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Ac} \times 2$), $2.34\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.34\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.38(1 \mathrm{H}, \mathrm{dd}$, $\left.2^{\prime}-\mathrm{H}\right), 5.11(1 \mathrm{H}, \mathrm{dt}, 15-\mathrm{H}), 5.69(1 \mathrm{H}, \mathrm{d}, 13-\mathrm{H}), 6.37(1 \mathrm{H}, \mathrm{d}, 10-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d}, 11-\mathrm{H})$.

Anal Calcd for $\mathrm{C}_{45} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{Si}$: C 62.47, H 8.85, N 3.24.
Found: \quad C 62.19, H 8.81, N 3.44.
General Procedure for Preparation of (23E)-23-C-(Alkoxycarbonylmethylene)-23-deoxy-5-Omycaminosyltylonolides (5, 7 and 9), (23E)-23-C-[(2E)-3-(Ethoxycarbonyl)-2-propenylene]-23-deoxy-5-O-mycaminosyltylonolide (11) and 14-De(hydroxymethyl)-5-O-mycaminosyltylonolide 14-Nitrile (16)

A solution of $4,6,8,10$ or $15(0.12 \mathrm{mmol})$ in $\mathrm{MeOH}(2.2 \mathrm{ml})$ was kept at $50^{\circ} \mathrm{C}$ for 13 hours. Concentration gave a residue, that was dissolved in 0.5 m hydrochloric acid in 50% aqueous acetonitrile $(1.1 \mathrm{ml})$ and the solution was kept at $37^{\circ} \mathrm{C}$ for 25 hours. After neutralization with aqueous sodium hydrogencarbonate (saturated), the mixture was extracted with CHCl_{3}. The organic solution was washed with aqueous sodium sulfate (saturated), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Purification of the residue with column chromatography with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aqueous ammonia ($15: 1: 0.1$) gave solids of the titled compounds in yields of $85 \%(5), 82 \%(7), 83 \%(9), 53 \%(11)$ and $27 \%(15$, unstable), respectively.

5: $[\alpha]_{\mathrm{D}}^{22}-26^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1725,1680,1595$.
Anal Calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{NO}_{11} \cdot \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 60.99, \mathrm{H} 8.22, \mathrm{~N} 2.15$. Found: $\quad \mathrm{C} 61.00, \mathrm{H} 8.02, \mathrm{~N} 2.19$.
7: $[\alpha]_{\mathrm{D}}^{22}-25^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1720,1680,1595$.
Anal Caled for $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{NO}_{11} \cdot 1 \frac{1}{3} \mathrm{H}_{2} \mathrm{O}: ~ \mathrm{C} 60.96, \mathrm{H} 8.37, \mathrm{~N} 2.03$. Found: $\quad \mathrm{C} 61.08, \mathrm{H} 8.16, \mathrm{~N} 2.27$.
9: $[\alpha]_{\mathrm{D}}^{22}-25^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1715,1675,1590$.
Anal Caled for $\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{NO}_{11}$: C 63.25, H 8.40, N 1.99 . Found: \quad C 63.49, H 8.28, N 2.24 .

11: $[\alpha]_{D}^{22}+6^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1715,1680,1640,1590$.
Anal Calcd for $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{NO}_{11} \cdot \frac{2}{3} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 63.16, \mathrm{H} 8.30, \mathrm{~N} 1.99$. Found: \quad C 62.97, H 8.00, N 1.69.
16: $[\alpha]_{\mathrm{D}}^{18}-31^{\circ}\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\mathrm{cm}^{-1} 1725,1680,1600$.
Anal Calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$: C 60.98, H 8.20, N 4.59. Found: $\quad \mathrm{C} 61.02, \mathrm{H} 7.93, \mathrm{~N} 4.57$.

23-Deoxy-23-(dimethylaminoimino)-5-O-mycaminosyltylonolide (13)
A solution of $12(143 \mathrm{mg})$ in $\mathrm{MeOH}(2.9 \mathrm{ml})$ was kept at room temperature for 2 days. The product was then treated with 0.5 M HCl in 50% aqueous acetonitrile (1.4 ml) at $37^{\circ} \mathrm{C}$ for 18 hours and processed as described for 5 to give, after column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{EtOH}-28 \%\right.$ aqueous ammonia, $20: 1: 0.1$), a solid of $13,45.5 \mathrm{mg}(46 \%):[\alpha]_{\mathrm{D}}^{22}-18^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1720$, 1675, 1595.

Anal Calcd for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{9} \cdot \mathrm{H}_{2} \mathrm{O}$: C 60.46, H 8.40, N 6.41. Found: $\quad \mathrm{C} 60.40, \mathrm{H} 8.54, \mathrm{~N} 6.87$.

References

1) Tsuchiya, T.; S. Sakamoto, N. Kajikawa, S. Umezawa, M. Hamada \& H. Umezawa: Syntheses of 23-C-substituted derivatives of mycaminosyl tylonolide. J. Antibiotics 39: 1021~1024, 1986
2) Sakamoto, S.; T. Tsuchiya, S. Umezawa \& H. Umezawa: Synthesis of (14R)- and (14S)-14-de(hydroxy-methyl)-14-hydroxymycaminosyl tylonolides. Bull. Chem. Soc. Jpn. 60: 1481~1488, 1987
